AD=-AD65 406

UNCLASSIFIED

= e —

GENERAL RESEARCH CORP SANTA BARBARA CALIF F/6 9/2
FORTRAN AUTOMATED VERIFICATION SYSTEM (FAVS). VOLUME IIl. DMATR==ETC(U)

JAN 79 R A MELTON: D M ANDREWS F30602=76=C=0436
. RADC=TR=78-268~VOL=3

90%S90vay *dod 114 9(Q

FAITAI A o T

TSRS

kel

BN 0 R A A

B LIPS B R S O I T e

i AT S A TP SR OB

SECURITY CLASSIFICATION OF THIS PA Brrorouys

REPORT DOCUMENTATION PAGE - S, Ly S

NUMBER z/Zov'r ACCESSION NO.| Ja¥EQIPIENT'S CATALOG NUMBER
RADC{TR-78-268, Vol III (of three) V?: j

T TITCE Ter-SusTTTey

[h
GRIRAR 4yTOHATED JERIFICATION JUSTEM (FAVS Final Zechnical Xepapt,
DMATRAN ws- _f;‘l_)"]\ Oct 76 — Jan 78 ~

ser's Gufde pp——mmeet ——

D
Kich [
jbo\w‘hz

N/A
8. CONTRACT OR GRANT NUMBER(s)

339691-76-5- 36]’

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK U UMBERS

@ A. Melton
». H./Andrews

B R NG ORGANIZATION NAME AND ADDRESS
General Research Corporation

P.0. Box 6770 01B
Santa Barbara CA 93111 /é 3 320

11. CONTROLLING OFFICE NAME AND ADDRESS

——
Rome Air Development Center (ISIE) Ja_ 979
Griffiss AFB NY 13441 ” s

46
T4, MONITORING AGENCY NAME & ADDS ontrolling Office) | 15. SECURITY CLASS. (of this report)
Same UNCLASSIFIED

@7

16. ODISTRIBUTION STATEMENT (of this Report)

1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

Approved for public release; distribution unlimited.

DDC

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)
Same D | l OIJ_T'
{ we 8 19m
18. SUPPLEMENTARY NOTES] w&)&ﬁ t"—E
RADC Project Engineer: Frank S. Lamonica (ISIE) B

19. KEY WORDS (Continue on reverse aside if necessary and identily by block number)
Computer Software FAVS
Software Testing Automated Verification System
Software Verification
Software Documentation

n_!'rl“:? (Continue on reverse side if necessary and identify by block number)

DMATRAN is a structured programming language which provides the logical
constructs that are necessary to write structured code in FORTRAN. The
additional control <constructs in DMATRAN are ('13/ a structured IF construct
which allows execution of a group of statements, two basic structures which
permit iteration while a logical expression is true (DO WHILE...END WHILE) or
until a logical expression becomes true (DO UNTIL...END UNTIL), and (@)% non-

(Cont'd)

DD ,'jon'ss 1473 €oimion oF 1 Nov 68 1s oBsOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

w19 US ud 089 &

L-II i - et .
P) " o

iterative CASE structure which begins with an integer expression which is —esi, , ¢

-

RITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Item 20 (Cont'd)

evaluated and then compared with integers in a list of CASE statements that
follow. Execution of a group of statements following the matching CASE state-
ment is then initiated. The DMATRAN language also contains an INVOKE...BLOCK...
END BLOCK construct which provides a form of internal subroutine capability

as well as a way to reduce overhead costs by eliminating duplicate sections
of code.

This DMATRAN User's Guide describes and illustrates each structured con-
struct. It also explains how to use the DMATRAN precompiler which translates
DMATRAN into compilable FORTRAN code. The DMATRAN precompiler provides
additional source text editing and display features including page ejection,
suppressing source listing, and changing the syntax of DMATRAN statements; the
DMATRAN commands for these capabilities are also described. (_\

The DMATRAN precompiler has been installed on the HIS 6180 GCOS and
MULTICS computer systems at the Rome Air Development Center, Griffiss AFB,
New York, and on the UNIVAC 1100/42 computer systems at the Defense Mapping
Agency Aerospace Center in St. Louis, Missouri, and the Defense Mapping Agency
Topographic Center in Washington, D.C.

R o T ——

W

[; ACCESS o7 Tor
| NTIS Wiite Section

!

4 ooc B4f Section [) 3

[AN o H

JuS PRSI :

| . rsssene 2

‘ BY RN ?
HNES UIETITY CODES i ;

o : '\%

NE

A P

UNCLASSIFIED
SECURITY OLASSIFICATIQN OF Tuie PAGE(When Data Entered)

SECTION

TR g e oy e g b

AW

CONTENTS

INTRODUCTION

DMATRAN CONTROL CONSTRUCTS

2.1 IF...THEN...ELSE...END IF

2.2 DO WHILE...END WHILE

2.3 DO UNTIL...END UNTIL

2.4 CASE OF...CASE...CASE ELSE...END CASE
2.5 BLOCK...END BLOCK AND INVOKE

USING THE DMATRAN PRECOMPILER
3.1 DMATRAN Input

3.2 DMATRAN Indented Listing
3.3 FORTRAN Output

DMATRAN CONSTRAINTS
4.1 SYNTAX

4.2 DO UNTIL

4.3 CASE

4.4 BLOCK Construct

DISPLAY COMMANDS

5.1 Command Form

5.2 Source Listing

5.3 Double-Space Around Comments
5.4 Keyword Recognition

5.5 Page Ejection

5.6 Extended Comment

111

PAGE

1-1

2-1
2-3
2-5
2-5
2-8
2-11

3-1
3-1
3-2
3-3

4-1
4-1
4-1
4-1
4-1

5-1
5-1
5-2
5-2
5-2
5-5
5-5

a CONTENTS CONT.

!

| SECTION
APPENDIX A SUMMARY OF DMATRAN STATEMENTS AND COMMANDS A-1
APPENDIX B FILE DESCRIPTIONS B-1
APPENDIX C JOB STREAMS c-1

INDEX I-1

ILLUSTRATIONS

NO. PAGE
1.1 DMATRAN Precompiler 1-2
2.1 DMATRAN Control Constructs 2-2
2.2 IF...THEN...END IF Construct 2-3
2.3 IF...THEN...ELSE...END IF Construct 2-4
2.4 DO WHILE...END WHILE Construct 2-6
2,5 DO UNTIL...END UNTIL 2-7
2,6 CASE OF..CASE..CASE ELSE...END CASE 2-9
2.7 DMATRAN Case Conmstruct 2-10
2.8 BLOCK. ..END BLOCK and INVOKE Construct 2-12
2.9 BLOCK Cross-Reference Report 2-13
3.1 DMATRAN Source Input 3-1
3.2 DMATRAN Indented Listing 3-2
3.3 Translated FORTRAN 3-4
5.1 DMATRAN Keyword Syntax 5-3
5.2 Listing of DMATRAN Keyword Example 5-4
v
- I D PP K 0 OB Y b i T e e e e e

e - . i e ——— e e

1 INTRODUCTION

DMATRAN is an extension to FORTRAN that simplifies structured
programming by providing a convenient syntax for writing structured
programming control constructs. The DMATRAN precompiler translates the
DMATRAN statements into standard FORTRAN while passing all other state-
ments unchanged to a file which can then be compiled by the FORTRAN
- compiler. This sequence is illustrated in Fig. 1.1. In addition to
the translation, the precompiler checks the control structure for proper

L
P
4
!
g

use of DMATRAN control structures and issues error messages if violations

occur.

The precompiler provides the following additional features to
improve code production:

1. Indented listing of the DMATRAN source code.

; 2. Editing functions which include in-line comments, double- |
spacing around comments, indentation control, selective page |
B ejection, and selective suppression of the source listings. {

1-1 1

e

(" DMATRAN SOURCE
(INPUT FILE)

g

DMATRAN
PRECOMPILER

COMPLIER

i

EXECUTE

Figure 1.1.

DMATRAN LISTING

(PRINT FILE)

DMATRAN Precompiler

1-2

AN-50167

. P ——————

2 DMATRAN CONTROL CONSTRUCTS

DMATRAN replaces FORTRAN control statements with the following
control statement constructs:

conditionally executable sequences of statements.

@ DO WHILE...END WHILE - permits iteration of a code segment
while a specified condition remains true.

e CASE OF..-CASE.-.CASE nsu..om CASE - ‘11m mltiplﬂ
; choices for program action selection.

i] ° DO UNTIL...END UNTIL ~ permits iteration until a specified
: " condition becomes true.

INVOKE<name>. ., .BLOCK<name>...END BLOCK - provides a facﬂit_y-'
for top-down programming and internal subroutines.

These statement forms can be intermixed with ordinary FORTRAN non-control
statements in the text stream which is processed by the DMATRAN precompiler.
DMATRAN statements are converted by the precompiler to equivalent FORTRAN
statements, and the resulting file can be compiled by the FORTRAN compilér
in the normal manner. A description, flowchart, and example of each

DMATRAN control construct is provided in this section. The DMATRAN con- 1
structs are shown in Fig. 2.1.

RN 5Ny e S Ay 8 BP0 RIS A W 0w VTN E e e

IF (EXPRESSION) THEN IF (EXPRESSION) THEN
END IF ELSE
END IF
DO WHILE (EXPRESSION) DO UNTIL (EXPRESSION)
END WHILE END UNTIL
CASE OF (INTEGER EXP.) INVOKE (BLOCK-NAME)
CASE (INTEGER,) :
; BLOCK (BLOCK-NAME)
CASE (INTEGER,) .
: END BLOCK
CASE ELSE
§ END CASE

Figure 2,1. DMATRAN Control Constructs

2-2

“rr R

8 R A

S X AR B St

LIRS, - S » o s i

2.1 IF...THEN...ELSE...END IF

The IF...THEN...ELSE...END IF construct provides block structuring
of conditionally executable statements. The basic form of this construct
is IF...THEN...END IF, illustrated in Fig. 2.2. If <expression> is true,
control transfers to the first statement within the construct; otherwise,
the statement immediately following the END IF will be executed. Use of
the ELSE statement is optional. If the ELSE is present and <expression>
is false, the statements following the ELSE are-executed. This construct
is illustrated in Fig. 2.3.

IF (<EXPRESSION>) THEN

STATEMENTS TO EXECUTE IF <EXPRESSION> IS TRUE
END IF

-]

(¥,)

3

IF 3

(<EXPRESSION>) >—<EXPRESSION> 3

THEN
.NOT.

<EXPRESSION>

STATEMENTS TO EXECUTE
IF <EXPRESSION> IS TRUE

Figure 2.2, IF.,.THEN...END IF Construct

e U SS———

YT

NPT —

IF (<EXPRESSION>) THEN

. STATEMENTS TO EXECUTE IF <EXPRESSION> IS TRUE
ELSE

. STATEMENTS TO EXECUTE IF <EXPRESSION> IS FALSE
END IF

IF XPRESSION <
(<EXPRESSION>) SEXFRESI N 2
: THEN ~
o
.NOT. 2
<EXPRESSION>
: 1
STATEMENTS TO EXECUTE STATEMENTS TO EXECUTE
IF <EXPRESSION> IS FALSE IF <EXPRESSION> IS TRUE

END IF)

FUNCTION SINC(X)
IF (X .EQ. O) THEN
. SINC = 1.

ELSE

. SINC = SIN(X)/X
END IF

RETURN

END

Figure 2.3. IF...THEN...ELSE...END IF Construct

2.2 DO WHILE...END WHILE

The DO WHILE...END WHILE construct indicates a repetitive operation
which is to be performed zero or more times. Execution occurs in the
following manner:

45 The value of <expression> is found: if true, the statements
contained within the DO WHILE block are executed; if false,
control passes to the statement immediately following the
END WHILE.

2. If the statements within the DO WHILE block have been executed,
the value of <expression> is checked again, with the same

consequences as in (1).

Figure 2.4 illustrates the form and meaning of this construct. It is

important to note that no initialization or incrementing operations are {
caused by the DO WHILE...END WHILE construct. Initialization must be

explicitly performed prior to entering the loop, and the iteration

e

variables must be explicitly modified on each pass through the loop.

2.3 DO UNTIL...END UNTIL

The DO UNTIL...END UNTIL construct is like a FORTRAN DO-LOOP in that
it is performed at least once and has a single exit at the bottom of the
loop, and like a DO WHILE...END WHILE in that no initialization or incre-
menting operations are caused by this construct. Initialization must be
performed prior to entering the loop, and iteration variables must be

modified on each pass through the loop. Figure 2.5 illustrates this

R —

construct.

s

The statements enclosed within the DO UNTIL and the END UNTIL are
. executed &t least once. Then <expression> is evaluated and, if false, f i
% iteration and evaluation of the expression continue until it is true. i
% At that time execution of the statements following the END UNTIL begins.

2-5

&

INITIALIZATION STATEMENTS
DO WHILE (<EXPRESSION>)
; STATEMENTS TO EXECUTE IF <EXPRESSION> IS TRUE

END WHILE

&

INITIALIZATION
] STATEMENTS

AN-47325a

DO WHILE

.NOT. <EXPRESSION>
(<EXPRESSION>)

<EXPRESSION>

, STATEMENTS TO EXE-
| CUTE IF <EXPRESSION>
{ IS TRUE

5 END WHILE

FUNCTION SQRT(A)
X=A

00 WHILE(ABS(X-A/X) .GT. 1.E-6)
i X = (X+A/X)/2

END WHILE
SQRT = X
RETURN
END

Figure 2.4. DO WHILE...END WHILE Construct

2-6

s, : s v IS : i A A AN Ao NS SN O TSl SRR B A

INITIALIZATION STATEMENTS

DO UNTIL (<EXPRESSION>)
. STATEMENTS TO EXECUTE IF <EXPRESSION> IS FALSE
END UNTIL
'
. ; .
INITIALIZATION S
STATEMENTS 2
S
| D0 UNTIL
5 (<EXPRESSION>)
i
; STATEMENTS TO EXECUTE
IF <EXPRESSION> IS
FALSE
‘
} .NOT.
: <EXPRESSION>
i
‘ <EXPRESSION>
FUNCTION CONVRG(XINIT, EPS, F)
EXTERNAL F
X = XINIT
DO UNTIL (ABS(X-XOLD).LE.EPS)
: XOLD = X
h . X = F(X)
: END UNTIL
CONVRG = X
t RETURN
y END
‘ Figure 2.5. DO UNTIL...END UNTIL
3
3
3 2"‘7

e e——

B

2.4 CASE OF...CASE...CASE ELSE...END CASE

The CASE statement provides a way to select which group of statements
will be executed. The general form of the CASE construct consists of
CASE OF...CASE...CASE ELSE...END CASE.

Figure 2.6 illustrates the CASE construct., I , J , and N represent
integers of positive value. They may be in any order, and there is no

limit to how many integers may be listed.

The value of <integer expression> is computed, and if any of the
specified integers in the CASE list are equal to the value of <expression>
then the transfer of control is to the statements which follow that
particular CASE. If there is no such CASE, and the CASE ELSE statement is
present, then the block of statements following the CASE ELSE is executed;
otherwise, no block is executed. If there are two CASE statements with
the same CASE index, then the block of statements following the first
occurring one is executed (if the CASE expression has that value). After
the block of statements selected has been executed, control transfers to
the statement after the END CASE.

A listing containing an example of the CASE construct is shown in
Fig. 2.7.

2-8

0. G AR 8 95 RS SR S MTUET S S AN = R TR g o

CASE OF (<INTEGER EXPRESSION>)

CASE (1)

. BLOCK OF STATEMENTS

CASE (J)

BLOCK OF STATEMENTS

CASE (N)

BLOCK OF STATEMENTS

CASE ELSE

BLOCK OF STATEMENTS

END CASE

J
{
|
|

?

CASE OF
(<INTEGER EXPRESSION>)

(CAse ())

|

=

CASE (N)

CASE ELSE

AN-49312

STATEMENTS TO
EXECUTE IF
<INTEGER
EXPRESSION>
EQUALS 1

STATEMENTS TO
EXECUTE IF
<INTEGER
EXPRESSION>
EQUALS J

STATEMENTS TO
EXECUTE IF
<INTEGER
EXPRESSION>
EQUALS N

STATEMENTS TO
EXECUTE IF
<INTEGER

EXPRESSION> IS NOT
EQUAL TO I, J OR N

Figure 2.6,

CASE OF..CASE..CASE ELSE...END CASE

it intlh

SUBROUTINE XAMPL (ITYPE,NPARS)

CASE OF (ITYPE)
. CASE (3)
CALL GETCRD(ITYPE)
CASE (5)
JTYPE = ITYPE + 3
5 CALL STRUCT(JTYPE)
: CASE (9)
f CALL IBALPR(ITYPE,NPARS)
5 CASE ELSE
CALL ERROR
| END CASE
* RETURN q
END

Figure 2.7. DMATRAN Case Construct

2-10

7 - & P e

2.5 BLOCK...END BLOCK and INVOKE

The BLOCK...END BLOCK construct provides a form of internal sub-
routine capability in DMATRAN source programs. This construct is an
internal procedure which has access to all variables in the routine
which contains it. A BLOCK...END BLOCK is executed only if it is
referred to with an INVOKE statement which specifies its name. The
form for this construct is:

INVOKE (<name>)

BLOCK (<name>)

END BLOCK

where <name> is any string of characters (i.e., COMPUTE LENGTH, PRINT
CURRENT STATUS, or COMPUTE NEW ARRAY ELEMENT). The name of a BLOCK may
be arbitrarily long, so that the name can have mnemonic significance.

All characters are significant after the first non-blank and before the
last non-blank. The name of a BLOCK is known throughout the entire
routine in which it is contained. Figure 2.8 illustrates this construct.

As the flowchart for this construct indicates, it is a single-entry
(the BLOCK statement), single-exit (the END BLOCK statement) section of
code. An INVOKE statement causes control to transfer to the named
BLOCK statement, and the matching END BLOCK statement causes control to
transfer back to the statement after the INVOKE. More than one INVOKE
for a given BLOCK...END BLOCK construct is allowed. Though BLOCK...END
BLOCK constructs can be nested, no recursion is allowed in the invoking
of BLOCKS (i.e., a BLOCK cannot directly or indirectly invoke itself).
BLOCKS cannot be invoked from an external routine, nor can they be
passed as a parameter to another routine. BLOCK constructs may be
placed before or after the RETURN statement.

2-11

T ——

INVOKE (<NAME>)
BLOCK (<NAME>)

BLOCK STATEMENTS
END BLOCK

<
%
2
i BODY OF BLOCK...
END BLOCK

END BLOCK)

SUBROUTINE MLTPLY(A,B,C,N)
DIMENSION A(10,10),8(10,10),C(10,10)
I=1
DO WHILE (I .LE. N)
J=1
DO WHILE (J .LE. N)
INVOKE (COMPUTE NEW ARRAY ELEMENT)
J=J+1
END WHILE
I=1+1
END WHILE
BLOCK (COMPUTE NEW ARRAY ELEMENT)
A S =0.0
K=1
DO WHILE (K .LE. N)
b S =S+ A(I,K) * B(K,J)
K=K+1
. END WHILE
. C(I1,J) =S
END BLOCK
RETURN
END

Figure 2.8. BLOCK...END BLOCK and INVOKE Construct

2-12

S g

L

o

e v g T A AR i

it

e o

'
e e A SR

When the BLOCK...END BLOCK construct is used, available space for
storing additional BLOCK names is indicated in the BLOCK Cross-Reference
Report (Fig. 2.9) which follows the DMATRAN source listing for each
module. The total number of characters in all BLOCK names used in one
subroutine cannot exceed 1,000. The number of INVOKEs and the number of
i BLOCKs varies with each module as it is dependent on the size of the
names of the BLOCKs and the number of invocations. When the maximum has

been reached, a message is printed on the DMATRAN listing indicating a
BLOCK name table overflow.

an———

¢ BLOCK CRCSS=-REFERENCE

BLOCK nANE DEFINED INVOKEC |
INITIALI2E BOUNDARIES 16 27 !
SORT INCCMING TABLE IN SEGMENTS 84 29
PARTITION SCRT SEGMENTED TABLE 80 30 | 3
SORT E{TIRE TABLE 114 32
SWITCH INCOMING TABLE BLOCKS 10 SORTED 127 34
TRANSFER FROM TABLE FOR FIRST SORT 133 59 116
SLY UP SORT BY SEGMENTS 151 83
STORZ SMALLEST IN TEMPORARY TABLE 184 90 9% 110 16%

, MOyE FROM A SEGMENT TO ARRAY 189 92 157

i FIND WHICH SEGMENT 167 9% 102 163

645 WORDS LEFT

Figure 2.9. BLOCK Cross-Reference Report

THIS PAGE IS BEST QUALITY PRACTICABLR
FROM COPY FURMISHED T0DDC ___—

2-13

There are many reasons for using the BLOCK construct. For example,
the overhead in calling subroutines is often very high; and, in addition,
i ! variables in FORTRAN and DMATRAN programs must be passed as parameters or
) placed in COMMON to be accessible to both the caliing routine and the
subroutine which is called. Often a subroutine references only variables
which are already in the calling routine. Using a BLOCK structure as a
internal subroutine eliminates the need to provide a means of accessing
these variables.

Another way the BLOCK construct can improve overhead costs is by
elimination of duplicate sections of code. Since the same BLOCK can be
invoked by more than one INVOKE statement, code can be made more efficient
, by putting identical sections of code into BLOCK structures. The following
i example illustrates the use of BLOCKs to avoid code duplication.

2-14

S1 and S2 in the following code represent two sets of statements.

The use of a BLOCK in Method 2 below eliminates the need for duplicating

code.
) Method 1:

IF(A) THEN
IF(C) THEN
sl ff
ELSE %
s
END IF
ELSE
IF(D) THEN
5,
ELSE
8 ¥
END IF \
END IF '

2

Method 2:
IF(A) THEN
IF(C) THEN
INVOKE (BLOCK-A)
ELSE
INVOKE (BLOCK-B)
END IF
ELSE
IF(D) THEN
INVOKE (BLOCK-B)
ELSE |
INVOKE (BLOCK-A) |
END IF ‘
END IF
where the BLOCKs are defined as:
BLOCK (BLOCK~A)
i
END BLOCK

and
BLOCK (BLOCK-B)
S
END BLOCK

ki s

2-15

' 3 USING THE DMATRAN PREPROCESSOR !
! 3.1 DMATRAN INPUT '
Figure 3.1 illustrates a DMATRAN source program with embedded i

FORTRAN statements ready for input to the DMATRAN precompiler. The

DMATRAN source code begins in column 7 and is not indentzd. More than

one module may be processed in each DMATRAN run.

SUBROUTINE EXAMPL (INFCLENGTH) EXAMPL]
c EXAMPL2
c ILLUSTRATION OF DMATRAN SYNTAX EXAMELS
c EXAMELY | 3
IF (INFOJLE«10 «AiNDe LENGTHGGT Q) THEN EXAMELS 3
CALL CALLER (INFO) EXANPLE
ELSE EXAMEL7?
LENGTH=S0 EXAMFLg
ENC IF EXAMPLY
CASE OF (INFO+6) _ EXAMELL0
CASE (14) EXAMsL11
LENGTH=LENGTH=INFO ExAMPLY2
CASE (17) EXAMPL13
DO WHILE (INFO.LT.20) EXAMPLLYG
DO UNTIL (LENGTHeLEZINFQ) EXAMPL1S
INVOKE (COMPUTE LENGTH) EXAMPL16
IF (LENGTH.GE+30) THEN EXAMPL17
INVOKE (PRINT=RESULTS) EXANPL1S
END IF EXAMPL1S
END UNTIL EXAMPL20
INFCZINFO+1 EXANPL21
END wHILE EXANPL22
CASE ELSE EXANPL23
DO WHILE (LENGTHeGT40) EXAMPL24
INVOKE (COMPUTE LENGTH) EXAMPL2S
END WHILE EXAMEL26E
END CASE EXAMPL2T
BLOCK (PRINT-RESULTS) EXAMPLZS
WRITE (641)INFCLLENGTH EXAMELZS
1 FORMAT (10X.15+20X+15) EXAMPL3O]
ENC BLOCK EXAMEL31 i
BLOCK (COMPUTE LENGTH) EXAMPL 32 i
LENGTH = LENGTh <10 EXAMEL33]
END BLOCK EXAMPL3Y i
RETURN EXAMFLES
END EXAMEL36

Figure 3.1. DMATRAN Source Input

i Y RSSO LRI AU A AT i

i
3.2 DMATRAN INDENTED LISTING {
Figure 3.2 illustrates the automatically indented DMATRAN listing
which resulted from processing the input shown in Fig. 3.1. The heading ‘
contains information from the first card of the routine being processed,
as well as a page number. The leftmost column of numbers refers to the
4
successive statements of the DMATRAN source deck. The nesting depth of 1
each indented statement is indicated next to the statement number.
Structural visibility is enhanced by connecting related DMATRAN statements
with vertical dots. The dots assist in tracing paths through the program,
identifying the statement number for a given line, and debugging improperly
formed DMATRAN control constructs. Structural errors are indicated by i
error diagnostics in the DMATRAN listing. Sequence information following
i column 72 of the DMATRAN source cards is included on the right side of
the DMATRAN listing.
SES NEST SOURCL SUBROUTINE EXAMPL (INFO'LENGTH) PAGE 1
1 SUBROUTINE E£xAMPL (INFOQLENGTH) ExAvpL)
2 (4 ExAND 2
3 c LLLUSTRATION CF DMATRAN SYNTAX EabipL s
“ [+ EXAPPLY
5 IF (INFOJLE.10 +AND. LENGTH.GT.0)THEN EXANELS
¢ 3 e CALL CALLER (INFO) EXAMPLG
7 ELSE EXAMpPLY
8 3 . LENGTh=2%0 ExarFLE
9 END IF ExANPLS
¢ CASE OF (INFC+s) EXANPLIU
1 CASE (14) EAANMBLLL
12 1 . LENGTh=LtAGTH=INFO ExA’PLL2
13 CASE (17) ExAvpL13
PLIS | . DO WHILE (INFCeLT.20) EXANPL LG
15 2 e o O UNTIL (LENGTH.LE.INFQ) EXANPLLS E
16 3 . . . 1INVOKE (COMPUTE LENGTH) ExAr¥PLle
17 3 e o o IF (LENGTH.GE«30) ThCN EXA¥pL17
18 & e« o o o INVOKE (PRINT=RESULTS) ExANPL1E
19 3 « w % BNU LE EXANPLLY
20 2 e o END ULNTIL EXANPLZy
cl 2 . . INFC=INFOeL EXANPL21
22 1 . END wHILE ExA¥pL22
e3 CASE ELSE EXAMPL23
2% 3 e DO WHILE (LENGTH.GT.0) EXAMPL24
2% 2 . . INVOKE (COMPUTE LENGTH) EXAVEL 25
26 1 « END WHILE EXANPL26
27 €40 CASE ExANPL2T
i 2s BLOCK (PRINY-KESULTS) EXANPL 28
| 29 1 e WRITE (6+1)INFOJLENGTH EXANPL29
3 30 3 b FORPAT (1UXeIS5+20X018) EXANPLIL
3 END BLUCK ExA¥PL 31
32 BLOCK (COMPUTE LENGTH) ExANEL 32
33 3 « LENGTH = LENGTH =10 EXAMPL33
3N tnND BLULCK EAAMPL 34
35 KETURN ExAMpL 35
36 EnO EXANPL 36

VOSEENEENNINLIIINRNONTEPINIIRIR RSN NI S RN IR PRESIINRRRAEAS IR ERONENSB AR ENRSR0RRS

Figure 3.2. DMATRAN Indented Listing

NOYS PAGE Y5 BEST QUALATT RACTICAREA,
E30l GOEY TURKISHED 70000 oo™

3.3 FORTRAN OUTPUT

Figure 3.3 illustrates a portion of the FORTRAN translation
produced by the DMATRAN precompiler. The input was the SUBROUTINE
EXAMPL from Fig. 3.2. The information in columns 73 to 80 of the trans-
lated FORTRAN is useful for tracing translated FORTRAN statements back
to the original DMATRAN source statements. If the original source
statement was a FORTRAN statement, columns 73 and 74 will contain "FO";
if it was a DMATRAN statement, column 1 is a "C" and columns 73 and 74
contain "DM." In either case columns 77 through 80 contain the original
DMATRAN source statement number (the leftmost column of numbers on the
DMATRAN listing) and columns 75 and 76 contain the depth of nesting of

the original statement.

3-3

——

(e XaNel,)

19997

19998

c
19999

c
19994
19993
c
19992
19990

19989
19987
c

19986

19982
c

1998
19963
19984

1988

1999)

19979
c
19978

THIS PAGE IS BEST QUALITY PRACTSOAN |
FROM 0QPY FURMLSHED T0DDC __— !

SUBRCUTINE EXAMPL (INFOILENGTH) :g 1
2 |
ILLUSTRATICN OF DNATRAN SYNTAX Fo 3 |
(4] 4 {
IF (ANFOJLE10 +ANCe LENGTH.G!,0)THEN on] |
IFCINFOLLEC10 ¢ANCe LENGTH.GT.0) 60 TO 19997 s |
G6c 10 19998 s |
CONTINUE s |
CALL CALLER ¢ INFQ) FO1 6 ‘
ELst on 7 |
60 Y0 1999% 7 |
CCNTINVE 7 |
LENGTHZS0 FO1 8
ENC IF oM 9
CONTINUE 9
CASE OF (INFO*6) on 10
19996=INFO+6 10 }
60 'T0 19996 10
caSE (1n) L) 11
CCNTINUE 11 {
LENGTH=LENGTH=INFO FO 31 12 ;
CASE (17) on 13 {
60 TO 1999% 13 3
CONTINUE 13 %
00 WHILE (INFO.LT.20) oM 1 1e \
CONTINUE a4 !
IF(INFO,LT.20) GO TO 19990 1
6o 10 19991 14
COATINUE 18
LO UNTIL (LENGTHLEINFQ) ON 2 213
G0 TG 19987 13
CONTINUE 18 g
IF(LENGTHJ.LE,INFO) GO TO 19988 15
COMTINUE 18 3
INVUKE (COMFUTE LENGTH) oM 3 16
ASSIGN 19985 7O L1996S 16
ASSIGN 19986 TO L19985 16
G0 10 19988 16
CONTINUE 16
IF (LENG6TH.GE«30) THEN Oh3 217
IF(LLNGTH.6E,3C) 6O TO 19982 17
60 TU 19983 17
CONTINUE 7
INVOKE (PRINT-RESULTS) , On & 18
ASSIGN 19980 TO L19980 18
ASSIGN 19981 TO L19980 a8
G0 T0 19980 18
CCNTINVE 18
END IF oM 3 219
CCNT INVE 19
CONTINVE 19
ENC UNTIL L2 20 P
60 T0 19989 20 {
CONTINUE 20 i
INFOSINFOeL FO 2 21 {
ENDC WHILE om1 22 |
Go Y0 19992 22
CONYINUVE 22 2
CASE eLSE om 23
G0 T0 19998 23 j
CONTINUE 23 '
00 WHILE (LENGTH.GT.0) ON 3 24 3
CONTINVE 2e ;

Figure 3.3.

Translated FORTRAN

DMATRAN CONSTRAINTS

ti SYNTAX
f ® A maximum of 20 cards per statement
i ° Statement labels between 10000 and 19999 should not be used

because the DMATRAN preprocessor adds statement labels,
beginning with label 19999 counting backwards, to the FORTRAN

source code (Fig. 3.3). F
® Don't transfer to labeled DMATRAN statements with FORTRAN

GO TO's.
° Comments may not be interspersed within DMATRAN statements ;
® All two-word DMATRAN directives may be written as two separate

words or merged into one; i.e., DO UNTIL or DOUNTIL.

T T T T Ty

4.2 DO UNTIL
When the DO UNTIL...END UNTIL construct is used for iteration, it
is important to note that the statements contained within the construct

will be executed once before the logical expression is evaluated.

4.3 CASE
The value of <integer-expression> in CASE statements must be

positive.

e

4.4 BLOCK CONSTRUCT
| ° Each BLOCK...END BLOCK construct should occur after all

INVOKE stat:ments which refer to the block name, but may be

before or after the RETURN statement.

° Blocks can only be entered through INVOKE statements.
Sequential control transfers around BLOCK...END BLOCK con-
structs. Do not use a GO TO enter the middle of a BLOCK..
END BLOCK construct from outside the block.

@ The maximum number of INVOKEs and BLOCKs depends on the lengths
of the BLOCK names and number of invocations, see Sec. 2.5.

i i ol e b s il o n e ” o . St e i

e . B

5 DISPLAY COMMANDS

The DMATRAN precompiler supports a variety of commands for
f controlling the format of DMATRAN source listings. The capabilities
: supported include:

e

Suppressing source listing

Double-spacing around comments

Keyword tecognit:lon. to allow a more simple DMATRAN syntax
Page ejection

Extended comments

; 5.1 COMMAND FORM
The DMATRAN command statement has two basic forms, both are FORTRAN

comment statements and begin with a C in column 1. The first command

statement form is
! C<command>
<command> must start in column 2 and may be any of the following:

LIST
NOLIST
DSOK
NODS
KWOK
NOKW
EJECT

The second form of the DMATRAN command statement is
CXCOM <value>

<value> must be a single character in column 7; column 6 must be blank.

5-1

—————

5.2 SOURCE LISTING
The DMATRAN source listing may be turned off and on with the two

commands

CNOLIST
CLIST (default)

This feature is useful when the DMATRAN source code is large and
only parts of the code are being modified.

5.3 DOUBLE-SPACE AROUND COMMENTS
Optional double-spacing around comments is obtained by the command

CDSOK
and is turned off with the command

CNODS (default)

5.4 KEYWORD RECOGNITION
The commands for control of display format are:

CKWOK
CNOKW (default)

The CKWOK command (meaning "key-word OK") allows DMATRAN statements to be
written in a simpler syntax. When the DMATRAN precompiler is in keyword
recognition mode, it recognizes DMATRAN statements which do not have
parentheses surrounding clauses (as well as all statements normally
recognized). In this mode, DMATRAN keywords are recognized if they begin
a statement, contain no blanks, and are immediately followed by a blank.
A problem may arise if FORTRAN is the embedded language. FORTRAN IF
statements will be interpreted as DMATRAN IF statements when a blank
precedes the left parenthesis of the statement. Figure 5.1 contains an
example of the simpler DMATRAN syntax with English as the embedded language
Figure 5.2 is the 1listing that results from processing the example in
Fig. 5.1 which uses the DMATRAN display commands.

I R————

THIS PAGE IS BEST QUALITY
FROM COPY FURNISHzD mwcmm

P g

CRWOK
SUBROUTINE TC FINU SGUARE ROOTS
CUSOK
c FOR EACH INFUT VALUE DETERMINE THE SCUARE ROOT
c INITIAL VALUE IS POSITIVE. REAL
DOUNTIL AN EOF Is ENCOUNTERED
INVOKE REAC INPUT VALUE
OETERMINE INITIAL ESTIMATE OF SGUARE ROGT
DOWHILE ESTIMATE HAS CONVERGED TO A
IF CURRENT ESTIMATE 1S wORSE THAN PREVIOUS ESTIMATE THEN
CETERMINE NEw ESTIMATE
END IF
ENG WHILE
c CURRENT EPSILON IS 1,0£-05
IF ESTIMATE#*#2 1S WITHIN EPSILON OF A THEN
INVOKE PRINT SQUARE ROOT
ELSE
INVOKE PRINT ERRUR MESSAGE
END IF
END UNTIL
CNOLIST
c THESE BLOCKS WILL BE COCEC LATER
BLOCK REAC INPUT VALUE
END BLOCR
8LOCK PRINT ERROR MESSAGE
END B8LOCK
cLIST
CLJUECT
CNODS
CNOKW
c BLOCK WRITTEN 6/77
8LOCK (PRINT SQUAKRE ROCT)
PRINT 1000 ROOTY
1000 FORMAT (% ROOT = #4£12,5)
END BLOCK
RETURN
ENC

Figure 5.1. DMATRAN Keyword Syntax

‘A W

e o ARSI BN T bl AR o .

SEQ NEST SOURCE KHOK
1 CRNOK
2 SUBROUTINE TO FIND SQUARE ROOTS
3 COSOK
L) Cc FOR EACH INPUT VALUE DETERMINE THE SQUARE ROOT
5 C INITIAL VALUE IS POSITIVE, REAL
6 OOUNTIL AN EOF IS ENCOUNTERED
7T 1 . INVOKE READ INPUT VALUE
8 1 . OETERMINE INITVIAL ESTINMATE OF SQUARE ROOT
9 1 . OOMHILE ESVIMNATE HAS CONVERGED TO A
10 2 . . IF CURRENT ESTIMATE IS MORSE THAN PREVIOUS ESTIMATE THEN
11 3 . . . DETERMINE NEW ESTINATE
12 2 . . END IF
13 1 . END WHWILE
16 1 Cc i CURRENT EPSILON IS 1.0E-05
15 1 e IF ESTIMATE®®2 IS WITHIN EPSILON OF A THEN
16 2 . . INVOKE PRINT SQUARE ROOT
17 1 . ELSE
18 2 . . INVOKE PRINT ERROR MESSAGE
19 1 e END IF
20 END UNTIL
27 C
SEQ NEST SOURCE KWOK
28 Cc
29 CNODS
30 CNOKN
31 C BLOCK MRITVEN 6/77
32 BLOCK (PRINT SQUARE ROOT)
33 1 ° PRINT 1608, ROOT
3 1 1000 . FORMAT(® ROOT = %,E12.95)
35 END BLOCX
36 RETURN
37 END
Figure 5.2. Listing of DMATRAN Keyword Example
5<4
_’W
- - aa W-— i SOUENWIRSS

-

R s o0 o i o S s G, 10T e IR e T

5.5 PAGE EJECTION

Specification of page ejection at any point in the DMATRAN listing
is especially useful in delineating BLOCK structures; it is obtained by
the command

CEJECT

¢ 5.6 EXTENDED COMMENT
Comments may follow a statement by using the command

CXCOM <value>

For example, in the command

CXCOM ;

the extended comment character is considered to be ";". The

statement
T =T + DT ; ADVANCE TIME

would appear on the DMATRAN listing unmodified, but the text "ADVANCE 1
TIME" would be changed into a FORTRAN comment on the translated FORTRAN
output.

C ADVANCE TIME
T=T+ DT

R

APPENDIX A

E SUMMARY OF DMATRAN STATEMENTS AND COMMANDS.

L

A-1

PAGE

SUMMARY OF DMATRAN STATEMENTS AND COMMANDS

DMATRAN STATEMENT

2-3
2-5
2-5
2-8
2-11

2-11

PAGE

IF...THEN...ELSE...END IF

DO WHILE...END WHILE

DO UNTIL...END UNTIL

CASE OF...CASE...CASE ELSE...END CASE
INVOKE

BLOCK. . .END BLOCK

DMATRAN COMMAND

5-2

5-5

5-5

(defaults underlined)

LIST

NOLIST

DSOK

NODS

NOKW

EJECT

XCOM <char>

FUNCTION

Selection construct

Iteration with test at top
Iteration with test at bottom
Selection construct

Execute an internal subroutine

Internal subroutine with

mnemonic name

FUNCTION

Resume listing of DMATRAN

source statements

Suppress listing of DMATRAN

source statements
Double-space around comments

Suppress double-spacing

around comments

Enter keyword recognition
mode

Leave key word recognition node
New page

Set the extended comment

character

P e

T —

D

T S mew—

".- o . P

APPENDIX B

FILE DESCRIPTIONS

o g e

B-1

FILES USED AT RADC INSTALLATION

UNIT FILE NAME DESCRIPTION
1 INPUT DMATRAN source input
2 PRINT Indented listing of DMATRAN source
3 COMPILE Compilable FORTRAN output
P FILES USED AT DMA INSTALLATIONS
UNIT FILE NAME DESCRIPTION
5 INPUT DMATRAN source input
6 PRINT Indented listing of DMATRAN source
l 3 COMPILE Compilable FORTRAN output

e T SE—
i

RADC HONEYWELL 6180/GCOS

SAMPLE DMATRAN JOB STREAM

The job stream in the following example can be used to execute

the DMATRAN precompiler.

1.
2.
3.
4.
5.

IDENT

SELECT BFCBGRC4 /DMATRAN/EXECUTE

PRMFL 01,R,S, (BCD dmatran source file)

PRMFL 03,W,S, (BCD translated FORTRAN source file)
ENDJOB

W W»» N W »

The BCD DMATRAN Source File may have been generated by a programmer
or by the FAVS Restructure Option (See FAVS User's Guide, General Research
Corporation CR-1-754).

B I R AR caicioma s\ e " PP 12 B iars

RADC HONEYWELL 6180/MULTICS

. B v~ At Ayl oSt
o AT S i AT R s
o SRR St a S LR

SAMPLE DMATRAN JOB STREAM

{ (USING THE GCOS ENCAPSULATOR)

In order to use the DMATRAN precompiler, using source code
written in DMATRAN generated by a programmer or by FAVS restructurer,
the job stream shown in the following example can be used.

snumb (number)

ident

program rlhs

limits (CP time limit),32k,,(print line limit)
prmfl h*,r,r,>udd>3201c0320>Urban>dmatran>hstar i
select >udd>3201c0320>Urban>dmatran>filedefs -ascii
prmfl 01,r,s,>udd>(BCD dmatran source file)

prmfl 03,w,s,>udd>(BCD Translated FORTRAN source file)
endjob

w
.
L7 7V R B - I 7 G 7 - SR 7

DMA UNIVAC 1100/42-
SAMPLE DMATRAN JOB STREAM

The job stream in the following example can be used to execute
the DMATRAN precompiler.

N s 5 et At A g A

@ASG, A YOURSOURCE. .YOUR DMATRAN SOURCE

QUSE Y., YOURSOURCE. : r
@ASG,A DBEMAFAVS-DMA. .ASG DMATRAN PRECOMPTLER i f
QUSE DMA. ,DBMFAVS-DMA. : f
éxqr DMA. TRAN .EXECUTE DMATRAN PRECOMPTLER i
@ADD Y. ELEMENTS .ADD DMATRAN SOURCE ELEMENTS HERE ’s

o T

The UNIVAC 1100/42 installation of the DMATRAN precompiler supports
an additional command (see Sec. 5.1) to assist in compiling translated
DMATRAN. This command contains CFOR in columns 1 thru 4, followed by any
desired information in columns 5 thru 80. The DMATRAN precompiler changes
the C 1in column 1 of all CFOR commands to an @ character as the CFOR
command is written to the FORTRAN output file. When the DMATRAN precompiler
automatically adds the FORTRAN output file to the runstream, the translated
CFOR cards direct the FORTRAN V compiler. Note that to compile a DMATRAN
source element, the first line in the element should be a CFOR command.
Indented listings without FORTRAN V compilations may be obtained by
omitting CFOR commands.

Cc-4

e ol o b i ettt Vi

B APOATTNIED, a1

AR T —
T

INDEX

Automatic Indentation

BLOCK Construct

BLOCK, Examples

BLOCKs, Maximum Number of
BLOCK Name

Card, Maximum Number per Statement
CASE Construct

CASE, Examples of

COMMENTSs

Depth, Nesting
Display Commands
DMA Files
DMA Job Streams
DMATRAN
Commands
Constructs
Guidelines
Input
Output
DO UNTIL Construct
DO UNTIL, Examples of
DO WHILE Construct
DO WHILE, Examples of
DSOK Command

ELSE
EJECT Command

Files

DMA

RADC
IF...THEN construct
IF()THEN, Examples of
INVOKE, Examples of
INVOKE, Number of
INVOKE Statement

JOB Streams
DMA UNIVAC 1100/42
RADC HONEYWELL 6180/GCOS
RADC HONEYWELL 6180/MULTICS

I-1

AT i AN RN VAN R HREN AE AAAN S ATN Er A SANNTA(T ESZ PRI I

PAGES
3-2

2-11, 4-1

2-12, 2-15
2-13

2-11, 2-13

4-1

2-8, 4-1

2-9, 2-10
5-1, 5-2

3-2, 3-3
5-1
B-2
c-4

5-1

2-1

4-1

3-1

3-2, 3-3

2-5, 4-1

2-7

2-5

2-6

5-2, 5-3, 5-4

2-3
5-5

B-2

B-2

2-3

2-3, 2-4
2-12, 2-15
2-13

2-11, 4-1

c-4
c-2
c-3

KWOK Command

Label, Initial Generation of
Level, Nesting

LIST Command

Listing, FORTRAN

Listing, DMATRAN

Listing Unit, DMATRAN

Nesting Depth
NODS Command
NOKW Command
NOLIST Command
Number of BLOCKs
Number of INVOKEs

RADC Files
RADC Job Streams

Structured Programming

XCOM Command

INDEX CONT.

1-2

PAGES
5-2, 5-3,

4-1
3-2, 3-3
5-2, 5-3,
3-3
3-2
B-2

3-2, 3-3
5-2, 5-3,
5-2, 5-3,
5-2, 5-3,
2-13
2-13

B-2
c-2, C-3

1-1

5-5

5-4

5-4

5-4
5-4
5-4

DMATRAN CONTROL CONSTRUCTS

CONDITIONAL
IF (logical expression) THEN

" ————— -
: T
R a— Mmm) L el Gl R st e 3

[ELSE]

END IF
3

LOOP

DO WHILE (logical expression)

END WHILE

eI TR T A ey

SEQUENTIAL
INVOKE (block name)

BLOCK (block name)

Py v AN VS iy,

CASE OF (integer expression)
{CASE (index {, index})}

[CASE ELSE]

.
.
.

END CASE

DO UNTIL (logical expression)

END UNTIL

END BLOCK
E {] = optional
{ } = optional an arbitrary number of times
DMATRAN COMMANDS (Defaults Underlined)
3
LIST List source statements
NOLIST Suppress listing of source statements
DSOK Double-space around comments
NDOS Single-space around comments
KWOK Reserved keywords identify DMATRAN statements
NOKW No reserved keywords
EJECT New page

XCOM <char> Set the extended comment character

